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Physics 110A, Section 2, Spring 2003 (Strovink)

PROBLEM SET 2

1.
Prove that

d

dx
θ(x− x′) = δ(x− x′) ,

where δ is a Dirac delta function and, as usual,
θ(x − x′) = 0 (1) for x < x′ (x > x′). That is,
prove that

∫ ∞

−∞
dx f(x)

d

dx
θ(x− x′) = f(x′)

for any differentiable function f . [Hint: Inte-
grate by parts.]

2.
Because the magnetic field is divergenceless
(∇ · 	B = 0), without loss of generality it can
be written as the curl of a vector potential 	A:
	B = ∇ × 	A. Provided that the scalar potential
V is varied as well, some variation is possible
in the definition of 	A; not quite standardly, one
may require ∇ · 	A = 0 (this is called “Coulomb
gauge”). Work this problem in Coulomb gauge.
(a.)
Using Ampère’s Law in the steady state, ∇× 	B =
µ0

	J , show that

∇2 	A = −µ0
	J .

(b.)
Using the Green function for the differential
operator ∇2, derive the steady-state integral-
equation solution for 	A:

4π
µ0

	A(	r) =
∫

dτ ′
	J(	r ′)

|	r − 	r ′| ,

where the integral is taken over all space.

3.+4.
According to the Proca equations (a relativisti-
cally invariant linear generalization of Maxwell’s

equations accommodating the possibility of a fi-
nite rest mass m0 for the photon), Gauss’s law
is modified to become

∇ · 	E =
ρ

ε0
− φ

λ̄2
, (1)

where φ is the electrostatic potential and

λ̄ ≡ h̄

m0c

is the reduced (by 2π) Compton wavelength of
the photon.

Following Williams, Faller, and Hill, Phys.
Rev. Lett. 26, 721 (1971), consider two concen-
tric spherical perfectly conducting shells of radii
R1 and R2, respectively, with R2 > R1. Imag-
ine that the inner sphere is isolated and that the
outer shell is driven by an RF oscillator so that
it has a potential (relative to ∞)

V2(t) = V0 cosωt .

(Strictly speaking, electrostatic potential is un-
defined in a time-dependent problem. However,
as long as the geometry remains spherically sym-
metric, 	E will remain curlless and V can still be
defined.)

If it is nonzero at all, the last term in Eq. (1)
is very small. To obtain an approximate solu-
tion to Eq. (1), we take advantage of this fact
by using the method of perturbations.
(a.)
If the last term in Eq. (1) were zero, what would
be the unperturbed solution φu(r, t) for the po-
tential anywhere inside the outer shell?
(b.) Approximate φ ≈ φu in Eq. (1) (any er-
ror is second order in the small quantity λ̄−2).
Consider a spherical surface at radius r, where
R1 < r < R2. Take the volume integral of both
sides of Eq. (1) within the radius r. Using the
Divergence Theorem, convert the left-hand side
into a surface integral of 	E and express the result
in terms of Er(r, t). Assuming that there is no
charge on the surface of the inner sphere, do the
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volume integral on the right-hand side to obtain
a result proportional to λ̄−2. Solve for Er(r, t).
(c.)
Integrate Er(r, t) between R1 and R2 to obtain
v(t), the voltage difference between R2 and R1,
in terms of λ̄−2.
(d.)
Suppose R1 = 0.5m and R2 = 1.5m. If the
amplitude of v(t) were measured to be 10−15V0

(such a signal would easily have been detected
by Williams et al.), what would be the photon
mass m0? Express m0 in eV/c2, and also as a
ratio to the 91 GeV/c2 mass of the heavy photon
Z0 discovered in 1981.

5.
A hollow spherical shell carries volume charge
density

ρ(r) =
k

r2

in the region a < r < b, where k is a constant.
If the electrostatic potential V = 0 at ∞, find V
at the origin. Do this
(a.)
By using Gauss’s law and spherical symmetry to
evaluate 	E everywhere, then line-integrating 	E
from ∞ to the origin.
(b.)
By using Griffiths Eq. (2.29).

6.
Consider a thin uniformly charged disk. At a
point on the cylindrical symmetry axis above the
disk, show that the electric field is proportional
to the solid angle subtended by the disk.

7.
Consider a solid cylinder of length l and radius
b 	 l, coaxial with the z axis and centered at
the origin. The cylinder carries a uniform vol-
ume charge density ρ0. On the z axis at a height
z, where |z| < l/4, estimate the electric field.
Make any approximations that you find sensible
and convenient.

8.
Consider the “screened Coulomb potential”

V (	r) ∝ e−kr

r
,

where k is a constant. Show that the total
charge that created this potential is zero. [Hint:
Is the charge density finite at the origin?]


